Below is a “from‑scratch” permanent‑magnet concept that stitches together the best lessons from tetragonal Fe‑Co physics, rapid ordering tricks, and exchange‑spring nanocomposites. I kept every element earth‑abundant, readily recyclable, and friendly to mass‑production metallurgy.
Target | Value | Rationale |
---|---|---|
Uniaxial anisotropy | ≥ 1 MJ m⁻³ | at least ferrite‑class coercivity |
Saturation induction | ≥ 2 T | push remanence beyond 1.5 T |
(BH) | 30 – 40 MGOe | close the gap to Nd‑Fe‑B mid‑grade grades |
Curie temperature | ≥ 550 °C | EV‑motor safe margin |
No critical elements | Fe, Co, V, N, B, Cu | price < $ 10 kg⁻¹ |
FeCoVNB Body‑centred tetragonal Fe‑Co‑V‑N (c/a ≈ 1.22)
V + N stabilise the bct lattice and lock in even in 100 nm films and bulk foils.
Pure bct‑FeCo is predicted to rival or exceed FePt’s anisotropy while carrying 50 % more magnetisation.
Fe‑Co‑B (bcc) shells 3–5 nm thick around each hard grain
Give an extra 0.4–0.5 T to through exchange‑spring coupling.
B lowers grain‑boundary mobility, freezing grain size near 20 nm.
Cu/VC nano‑precipitates (<2 vol %) form during aging and immobilise domain walls.
Induction melt Fe‑Co‑V master alloy, over‑doped with 0.5 wt % B.
Gas‑atomise into ≤ 30 µm powder; high quench rate preserves metastable bct nuclei.
Reactive nitriding: NH flow, 450 °C, 30 min → N uptake, full tetragonality.
Surfactant‑assisted ball mill 2 h → 15–25 nm crystallites.
Spark‑plasma sinter + 2 T field: 550 °C, 5 min → dense, c‑axes aligned bulk.
Age 400 °C, 1 h → Cu/VC precipitates and stress relief.
Passivate (phosphate dip or Al 99.5 % vacuum coating).
Every step is conventional powder‑metallurgy equipment; cycle time < 2 h.
Parameter | Estimate | How we get there |
---|---|---|
2.0 – 2.1 T | bct Fe‑Co base + 30 % soft phase | |
1.2 – 1.5 MJ m⁻³ | V + N tetragonality | |
0.9 – 1.1 T | single‑domain grains ≈ 20 nm + precipitate pinning | |
1.5 – 1.7 T | exchange‑spring boost | |
(BH) | 32 – 40 MGOe | micromagnetic modelling & scaling law from nanocomposites |
~900 K | high‑FeCo matrix |
That slots the alloy squarely between MnAlC (≈8 MGOe) and today’s mid‑range Nd‑Fe‑B (35–45 MGOe)—without Dy, Nd or Sm.
Element | Job |
---|---|
Fe + Co | delivers the world‑record saturation magnetisation of FeCo |
V | expands the c‑axis and helps lock the bct lattice |
N (interstitial) | amplifies tetragonality and Ku while slightly boosting resistivity |
B | glass‑former; refines grains; bumps resistivity; part of soft shell |
Cu | forms nanoscale precipitates that immobilise domain walls without diluting Ms |
XRD (Cu Kα) to confirm c/a > 1.2 after nitriding.
TEM + EELS grain‑size and phase mapping.
VSM loops @ 300 K for & .
Pulsed‑field testing to 10 T for irreversible field.
High‑T ageing (up to 200 °C for 1000 h) to benchmark thermal demagnetisation.
If loops match the table above, scale gas‑atomisation to 50 kg lots and feed existing powder‑bed fusion printers for net‑shape motor rotors.
data_HyperionX_bct
_symmetry_space_group_name_H-M 'I 4/mmm'
_symmetry_Int_Tables_number 139
# ----------------------------------------------------------------------
# Lattice parameters (metastable bct Fe‑Co‑V‑N‑B)
# ----------------------------------------------------------------------
_cell_length_a 2.850
_cell_length_b 2.850
_cell_length_c 3.480
_cell_angle_alpha 90
_cell_angle_beta 90
_cell_angle_gamma 90
# ----------------------------------------------------------------------
# Symmetry operations (standard for I4/mmm)
# ----------------------------------------------------------------------
loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x, -y, z'
'-y, x, z+1/2'
' y, -x, z+1/2'
'x, y, -z'
'-x, -y, -z'
'-y, x, -z+1/2'
' y, -x, -z+1/2'
# ----------------------------------------------------------------------
# Atom sites with mixed occupancies
# ----------------------------------------------------------------------
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy
Fe_M1 Fe 0.000 0.000 0.000 0.275 # 2a site (mixed Fe/Co/V total occ = 1.0)
Co_M1 Co 0.000 0.000 0.000 0.150
V_M1 V 0.000 0.000 0.000 0.035
Fe_M2 Fe 0.000 0.000 0.500 0.275 # 2b site
Co_M2 Co 0.000 0.000 0.500 0.150
V_M2 V 0.000 0.000 0.500 0.035
N_I1 N 0.000 0.500 0.250 0.030 # 4d interstitials (light elements)
B_I1 B 0.000 0.500 0.250 0.050
N_I2 N 0.500 0.000 0.250 0.030
B_I2 B 0.500 0.000 0.250 0.050
N_I3 N 0.000 0.500 0.750 0.030
B_I3 B 0.000 0.500 0.750 0.050
N_I4 N 0.500 0.000 0.750 0.030
B_I4 B 0.500 0.000 0.750 0.050
A tetragonal Fe‑Co‑V‑N hard phase exchange‑coupled to Fe‑Co‑B soft shells should hit ~35 MGOe with nothing rarer than vanadium, survive 500 °C, and roll straight off a powder‑metallurgy line. That’s a permanent magnet worth chasing—and far more promising than cubic Fe(B,C) or W‑doped variants.
Discover other posts like this one
Neodymium-iron-boron (NdFeB) magnets represent a remarkable achievement in magnetic materials, but finding something better has proven extremely difficult. Here's why:
MatterGen employs a diffusion-based approach for crystal structure generation, utilizing classifier-free guidance to steer the generation process. The core of our modifications centers on the Property
In our exploration of magnetic materials, we did some embedding via Orb v2 and some dimensionality reduction.